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Abstract

In this paper, an approach to increase the degree of autonomy of flight software is proposed. We
describe an enhancement of the Attitude Determination and Control System by augmenting it with self-
calibration capability. Conventional attitude estimation and control algorithms are combined with
higher level decision making and machine learning algorithms in order to deal with the uncertainty and
complexity of the problem.

1 Introduction

The goal of our project is to enhance the degree of autonomy of the Attitude Determination and Control
System (ADCS), enabling it to perform accurately without human intervention for an extended period of
time.  The approach is to evolve ADCS one step at a time into an autonomous system in a natural way
dictated by actual needs.  The purpose of this paper is to describe the first step in our program: the
development of the Autonomous Attitude Sensor Calibration (ASCAL). The intention is to demonstrate
ideas and concepts of on-board autonomy evolving from the existing control system, and not to develop
another technique of attitude sensor calibration.  A conventional ADCS uses data from available attitude
sensors to estimate the attitude of the spacecraft. To meet mission pointing accuracy requirements, the
attitude sensors must be calibrated for instrument biases, scale factors and misalignments immediately after
launch and as needed thereafter. Traditionally, the calibration process is performed by attitude support
specialists, often requiring elaborate procedures involving attitude consistency checks, data sampling and
trending, and diagnosis expertise. A system that is able to perform all of these functions autonomously will
have to deal with a large degree of uncertainty due to errors in the model parameters, incomplete model,
measurement errors and human decision making. One of the new interdisciplinary areas currently emerging
to tackle problems of this nature is the Intelligent Control Theory (Refs. 1-3) which combines conventional
control theory with decision making and learning tools developed in the field of Artificial Intelligence.
Following Tsypkin (Ref. 4), the necessity for applying learning arises in situations where a system must
operate in conditions of uncertainty.  Another active area of research is Hybrid Control Theory (Refs. 5, 6),
which deals with systems that involve both continuous and discrete data structures. The discrete data may
arise from sudden changes in the physical systems, from singularities in an incomplete dynamic model, from
computer round off errors, or from actions controlled by higher level decision making. The discrete data
often force the control system to make a choice and switch from one control law to another.

The system architecture adopted in this program has three layers: Execution, coordination, and planning.
Each layer is organized further into a hierarchy of components, with the lowest level being the most precise
and higher levels operating with less precise information and hence requiring an adaptive approach or
learning approach.  The choice between the adaptive or learning approach depends on the level of
uncertainty of the problem. The adaptive approach may be sufficient for problems with less uncertainty.
However, there are many different types of uncertainty. If an inconsistency exists in attitude estimation



then it is unclear which onboard sensors are more reliable than the others. This is a more complex type of
uncertainty. This type of uncertainty may have to be learned slowly through experience and  is precisely the
type of situation in which the learning process can prove most effective.  Learning in this case takes place
over a long time scale relative to the normal operation of the system.

The execution level is the lowest level. It involves conventional control algorithms and interfaces to the
spacecraft via sensors and actuators. The highest level consists of planners and schedulers. In a mature
system with more than one autonomous subsystem performing different functions, there may be only one
planner and scheduler that manages tasks for all subsystems. The coordination level is the middle level,
interfacing between the other two levels. This level consists of decision making tools, learning algorithms.
Some of these tools may be used to substitute for conventional algorithms that are too costly or too sensitive
to change or uncertainty.  For instance, in this paper, we apply machine learning algorithms to control the
calibration process instead of using batch or sequential processes to compute sensor residuals. The learning
algorithm should be independent of the physical system and of any lower level process involved. More
precisely, there are many state estimator algorithms to choose from. For each calibration task scheduled,
only a few of these algorithms will be chosen.  These choices should have no effect on the performance of
the learning algorithm.

The layer and hierarchical structure of the architecture allows us to build on an existing control system, such
as ADCS, step by step beginning with ASCAL which provides attitude sensor self-calibration functionality.
As development progresses, higher level adaptation is made each time a new subsystem with new
functionality is added to ADCS, such as gyroscope self-calibration functionality.  The new subsystem can be
operated and tested independent of previously developed subsystems.

Sensor calibration problems can be viewed as a dynamical system with uncertainty in the measurement
model parameters. There are several algorithms for sensor calibration (Refs. 7-10). The choice of algorithm
depends on the type of sensors being considered. Typically, it is left to the attitude experts to select
appropriate methods for the task. However, to demonstrate the ideas and concepts of ADCS enhanced
autonomy, we will focus on only one algorithm.  In a later stage of development, when the concept of self-
calibration has matured, additional algorithms may be added as new subsystems in the hierarchy.  Expert
knowledge on algorithm selection would be coded as rules in a rule-based system in the mid-level. The rule-
base will select an appropriate algorithm when a calibration task is scheduled.

An automated system such as ASCAL is useful for mission cost reduction. It automatically performs
routine monitoring and trending and stores experts' knowledge of sensor and instrument calibration to be
reused for future events.  Moreover, ASCAL may be useful for constellation of satellites, each having
similar pointing requirements.  Our future extension is to apply the same architecture described here to
other flight software such as orbit determination and navigation systems, tracking, and formation flying.

This paper is organized as follows. The main architecture of the system is described in Section 2.  The main
focus of this paper, the calibration component, is described in Section 3.  The technology used in the
calibration component is a heuristic learning automaton.  The prioritization for the calibration process is
based on the Local Dempster-Shafer theory developed in [1].  This is described in Section 4.  The
Coordinator and Planner level are discussed in Section 5 and 6 respectively.

2 ASCAL Architecture

Figure 1 shows the architecture of ASCAL. The execution level consists of an attitude estimator and
predictor. The coordination level determines which sensor parameters need adjustment, what should their
upper and lower bounds be, and which algorithms are appropriate.  This level also includes the learning
component in the calibration process. The planning level plans and schedules calibration tasks, making sure
that computing resources are available and avoiding possible conflicts with other tasks.

It is natural to consider extended state vectors consisting of an attitude vector and erroneous sensor
parameters. However, this will generally introduce additional non-linearity into the models and could make
the problem intractable or too costly to run on-board. To minimize the computational cost, we apply
machine learning techniques to adjust these parameters guided by past experience. Attitudes and errors are
computed each time sensor parameters are adjusted. Each cycle of the computation contributes new



information on the convergence of the solution.  This knowledge will affect the way these parameters are
adjusted.

Naively, attitude accuracy is monitored by estimating attitude using different combinations of gyros and
attitude sensors, uncalibrated versus calibrated.  The attitude residuals obtained from the computed attitudes
are predicted using a conventional prediction algorithm. When it is discovered that the attitude residual will
exceed a threshold sometime in the future, it means there is an inconsistency in the estimated attitudes.  The
attitude inconsistencies are then diagnosed and one or more calibration goals are created.  These goals are
expressed as which measurement parameters need adjustment, the range of adjustment and the most
appropriate calibration algorithm.  The calibration process is then planned and scheduled. In a spacecraft
where one or more sensors need regular calibration, or where computing resources are limited, the predictor
may be replaced by a periodic schedule managed by the planner/scheduler component.  The calibration
process is iterative, where the erroneous measurement parameters are adapted on the basis of system
experience in such a way that the attitude inconsistencies converge to zero.
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Figure 1  ASCAL architecture

3. Estimator and Predictor
When a calibration process is scheduled, the coordinator will set a goal following a guideline stored in its
knowledgebase, perhaps as a set of rules. A typical goal would be to calibrate a certain set of parameters.
The calibration procedure depends on the type of sensors on-board. If there are enough redundant sensors



the standard technique is to compute attitudes from a few different sets of sensors and compare the results. If
the pairwise difference between these attitudes have zero mean, then there is no inconsistency, and all of the
sensors are accurate (relative to each other). Generally, there are one or more sensors that are used as
standard.  They are the ones that have already been calibrated, or the ones with higher accuracy. We will call
a set of sensors used in an attitude estimation process a test set.  Generally, one or more of the test sets
contain sensors to be calibrated, and at least one of the test set contains accurate sensors.  If there are no
redundant sensors, or not enough available sensors to create at least two test sets, then the calibration
procedure usually involves more in depth analysis.  In this paper, we assume there is at least one sensor with
high accuracy, such as a Charge Coupled Device (CCD) star tracker, enabling us to calibrate other sensors
against them.  Such a sensor is frequently chosen as the standard frame of reference and generally does not
need calibration. In this paper, we assume that there is such sensor on-board.

Before the calibration process starts, a number of test sets are identified, with at least one of the test sets
containing the sensor(s) to be calibrated and the other test sets containing the standard sensor, calibrated
gyros, or other high accuracy sensors. The coordinator, via its rule-base component, will also select a
suitable estimator algorithm, for instance an attitude dynamic model and a measurement model for each
selected sensor.

Let a denote a test set, ax the attitude vector computed using measurements from all sensors in a. The

attitude dynamics and the corresponding measurement model are
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where ia  is a sensor in a, 
iap is its model parameter vector. Note that, in this algorithm, each 

iap is

assumed constant during each estimation cycle.  They are not members of state variables, however, their
values will be adjusted by the learning system described in the next section.

In the following, we give a simple example of a state estimator and trend predictor to demonstrate how the
learning system can be used in a calibration process. The inconsistency trend between attitude vectors

associated with two different test sets a and b is the difference baab xxT −= . The state space model for the

inconsistency trend and its slope abS are
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In system (2) abT  plays the role of output vector with preferred state 0,abT = 0.  All of the process and

measurement noises are assumed to be white Gaussian with zero mean. The systems (1) and (2) become a
two-stage problem.  Given a set of sensor parameters, attitudes are computed either by a batch least square
or a sequential method. System (2) predicts the inconsistency trend. Here we write it as a single step
predictor, but a multiple step predictor can also be done.



Attitude model (1)

Predictor model (2)

baxxT baab ≠−=    , LDS

Convergence Check
abX

Estimator

Figure 2.  ASCAL Learning System

}{
iap

Predictor

Learning System

Priority assignment

Plus/minus

4 Learning Systems

The heart of a learning system is the learning algorithm which is the mechanism used to adapt the
probability distribution. Based on the environment response and the action selected by the system at time t,
it generates p(t+1) from p(t).  There are two levels of learning in ASCAL.  When a calibration goal is set,
the coordinator must determine the sensors, algorithms, and parameter ranges needed to initialize the
calibration process.  This selection is based on the past experiences.  In particular, the parameter ranges are
chosen in such a way that the region is void of any singularity and at least one solution exists.  This
knowledge can be given a priori by attitude experts, and maintained by a learning algorithm. The second
level of learning is in the calibration process, where attitude residuals are computed, convergence tested,
and parameters adjusted sequentially. We assume that an appropriate metric is defined on the state space.
The selection of parameter adjustment is a learning process based on the rate of convergence (or
divergence) of the attitude residuals during the previous two (or more) cycles. Assume there are n sensor
parameters to be adjusted, and each parameter can be increased or decreased by a fixed quantity.  This
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2  possible actions, where each action is a set of parameters, each associated

with a + or – sign to denote if it is increased or decreased.  For instance, an action corresponding to an

increase in a and decrease in b is represented by the signed set },{ −+ ba .  These H actions are prioritized
by a probability or belief vector given by the Local Dempster-Shafer (LDS) (Ref s 11, 12).

To get a feel for the learning algorithm based on LDS, we will now describe a simpler algorithm based on
the Dempster-Shafer (DS) theory (Refs. 13, 14), modified to suit our calibration problem.  For a more in
depth discussion of  the LDS theory see Ref. 12.  DS theory is defined on a set of n elements. A mass
function on the action set H is a probability function that assigns a degree of belief to each action. More
precisely, the mass function satisfies the following conditions
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Two mass functions m m1 2 and  on H can be combined into a single mass function m m1 2⊗ by the

Dempster composition rule:
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The belief function associated to the mass function m is defined to be the cumulative probability
distribution on H:
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where the union between two signed sets is defined as the union of all signed elements, followed by

removing every subset of the form },{ −+ aa for some parameter a.  The belief function is used to prioritize
the actions for the learning algorithm.  If an action is chosen and the resulting attitude residuals decrease
with a faster rate or increase with a slower rate, then the system reprioritizes by applying the positive
learning algorithm described in Ref 12.  This will strengthen the previous prioritization.  Conversely, if the
previously chosen action is performed in the opposite manner, then the system reprioritizes by applying
negative learning algorithm, which will lessen the degree of belief on the failed action.

In general, a learning system may have a hierarchical structure. In this case, the selection of the action set
should also have a hierarchical structure. To support this structure, a hierarchical flavor of DS theory can be
defined in a natural way.  The action selection is performed in a sequence of steps. First, a highest level in
the hierarchy of the action set is selected, followed by a lower action. This procedure is followed until the
last level of the action set H.  This hierarchical structure will clearly reduce the size of the search space, and
hence enhance the performance of the automata.

The learning process discussed above is the simplest application of the (modified) DS theory to learning
automata. In practice this algorithm can be enhanced in several different ways to increase the performance
and robustness of the learning system.  Our possible future research topics in this areas are: Localization of
the action space (H) by applying LDS theory instead of DS theory. This will reduce the complexity of the
search and increase the performance of ASCAL.  Instead of keeping the step size of parameter modification
constant, we may consider it as a function of the rate of convergence computed from the previous cycles.
The function that works will guarantee the convergence of the solution.  The use of hierarchical or
multilevel learning systems accelerates the learning process (more so for the initial rate of learning) and
simplifies the structure of the learning system. The learning system discussed above is an active research
area with many applications in intelligent and hybrid control problems.

5 Coordinator

In some sense, the coordinator is a process manager whose responsibility is to monitor the physical
subsystem it is responsible for, i.e. the ADCS, and predict if any problem, i.e. an attitude inconsistency, will
occur.  If a problem is predicted, the coordinator will identify the source of the problem and create goals to
solve it.

The responsibility of the coordinator consists of two parts: monitoring/diagnosis and pre-calibration.  The
monitoring/diagnosis components monitors the state of health of the ADCS by periodically computing and
trending relative attitude residuals using multiple test sets.  When an attitude inconsistency is predicted, the
diagnosis component determines which sensor parameters are likely to be unreliable based on attitude data
that displays the trends.  The result of the diagnosis is the degree of unreliability, a probabilistic quantity,
assigned to each sensor parameter involved in the trending process.  Underlying the diagnosis process is the
uncertainty handler based on the LDS theory, (Ref 11).  When this is done, the coordinator creates goal to
calibrate the problematic parameters, and submits the goal to the planner.

When a calibration process is scheduled the pre-calibration tasks begin.  First, based on the degree of
unreliability, a collection of test sets is formed, and the bounds for the sensor parameters are computed.
Based on the sensors involved, attitude dynamics and measurement models are selected, and a state-space
system is defined for each test set.  Finally, the coordinator also determines any a priori knowledge the
calibration process may need, including the initial probability distribution for the learning system to use as
priority assignment in the learning process. It is convenient to use the degree of unreliability as the initial
probability distribution.  However, other expert knowledge the system may have can be combined with the



degree of unreliability using a modified Dempster combination rule. The coordinator performs these tasks
using decision making capability such as a rule-base.

6 Planner & Scheduler

This component may be responsible for several autonomous systems.  For ASCAL, the planner/scheduler is
responsible for scheduling sensor calibration. It should be aware of available sensors, i.e. those with target in
field of view, and related resources.  This means the spacecraft must be sufficiently equipped with a star
catalog, and Sun, Earth, and Moon ephemerides. The system must also be able to perform some maneuver
planning needed for gyroscope calibration, or to sample selected targets throughout the field of view.

In this version of ASCAL, the calibration process uses live data from attitude sensors on-board, to avoid
dealing with attitude history data management which is a formidable problem of its own.  However, as a
trade off, the planner will have to be smart enough to avoid conflicts among spacecraft activities, to manage
resources such as available sensors and computer time. A simple solution is to find a quiet window of time
when there is no important activity on-board and devote all attention to the calibration process.

7 Conclusion and Implementation Status
This study is the first phase of our program to extend the degree of autonomy of on-board flight software.
The consequences of failure are catastrophic for an attitude control system.  If the attitude control system
fails for even a brief period, the spacecraft may tumble, pointing the solar arrays away from the sun,
antennas away from the earth, and sensitive instrumentation in a potentially damaging direction. Such a
control system failure may or may not be recoverable.  Nonetheless, virtually all spacecraft have fully
autonomous, onboard attitude control.  Failure to properly calibrate the sensor parameters would lead to
inaccuracies in attitude estimation, and would in turn lead to attitude control system failure.  Sensor
calibration is traditionally done from the ground, because the standard procedures and algorithms are
storage and computationally intensive.  In this paper, we propose a non traditional approach, using learning
automata and heuristic priority assignment to adjust sensor parameters until all inconsistencies converge to
within an acceptable limit. Human intervention is called for if this process does not converge, and if the
diagnoser cannot resolve the problem.  In this case, the lessons learned should be added into the
knowledgebase for future use.  It is important to design the learning algorithms so that they are independent
of the sensors being calibrated or of changes in the environment.  This is key for autonomous attitude
sensor calibration in future missions.

The next natural step towards higher level on-board automation is to add data management capability to
ASCAL. Calibration process can be performed using historical data without disturbing other activities,
except computer resources.  To archive measurement data for the calibration process ahead of time would
require, the coordinator can be augmented with a data processing component. It is responsible for data pre
or post processing, data smoothing, and/or shifting. Generally, measurement data are sensitive to some
spacecraft's activities such as maneuvering.  The planner/scheduler must be aware of these activities.  With
this knowledge obtained from the planner/scheduler, the data processor may avoid the disturbed data, so
that relatively clean data for the past, say 24 hours, may be stored and ready to be used when a calibration
process is scheduled.  This problem suggests that high level autonomy is necessary for autonomy system
development such as ASCAL.

Other possible future development is autonomous orbit determination and control, orbit keeping,
maneuvering, and formation flying.  Machine learning approach described in this paper is a generic tool
that is likely to be useful in these applications.
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